DNAMAN Sequence Analysis Software

Restriction Analysis and In-Silico Cloning

BIOINFORMATICS PLATFORM

DNAMAN Features

- Restriction Site Analysis
- Restriction Enzyme Map
- Restriction Pattern In Silico Gel
- ▶ In-Silico Cloning
- Restriction DNA Fragment

- 1. Open a sequence file
- Click Restriction Analysis tool in Quick Analysis tab

💌 🖂 🕶 🖓 🔻	DNAMAN - AY599226.seq	—	\Box \times
Home Sequence Prote	in & Database View		Style 👻 🔞 🗸
Clipboard Cut Cut Clipboard Cut Cut Cut Cut Cut Cut Cut Cut Cut Cut	Select All \checkmark Select All \checkmark Coad Sequence from Selection Quick Analysis Command Quick Analysis	Settings	
Channel 🕂 🕂 🗙	** AY599226.seq		
	AY599226.seq		
All Channels All Channels Channel 1: AY599226 (DNA) Channel 2: Empty Channel 3: Empty Channel 4: Empty Channel 5: Empty Channel 6: Empty Channel 7: Empty Channel 7: Empty Channel 9: Empty Channel 10: Empty Channel 11: Empty Channel 12: Empty Channel 13: Empty Channel 15: Empty Channel 15: Empty Channel 16: Empty Channel 17: Empty Channel 18: Empty Channel 19: Empty Channel 20: Empty Channel 20: Empty Channel 20: Empty Channel 20: Empty	SEQ AY599226 2934 Composition 746 A; 729 C; 717 G; 742 T; 0 OTHER Percentage 25.4% A; 24.8% C; 24.4% G; 25.3% T; 0.0% OTHER MW (kDa) 905.64 ssDNA KEYWORDS CIRCULAR COLOURS sequence = 1 features = 0 FEATURES source 12934 /source="Cloning_vector" misc_feature 582671 /attributes="MCS; multiple_c;" gene complement(18742734) /name="bla" cds complement(18742734) /name="beta-lactamase" ORIGIN 1 TCGCCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA 61 CAGCTTGTCT GTAAGCGAAT GCCGGAGACA GACAAGCCCG TCAGGGGCGC TCAGCGGGGTG 121 TTGGCGGGTG TCGGGGATGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGACAGGGCG 131 ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGA ATCAGGCGCC 241 ATTGCCCATT CAGCTGCGC AACTGTTGGG AAAGCGCGCGTAACC GGTCACGGGC CTCTCCCATA 361 TGCAGCCGT GCGTAAAGCA GCCGGTAACC GGTCAGAGATG GTGACAGGCCGCT CTTCCCATAT 361 TGCAGCCGT GCGTAAAGCA TACTGGCGG GTGACAGACT CTTCAATT 361 TGCGCGCTA GAGAACAAG CCCGGTAACC GGCGAAAATC GTTAAGGATAAAAGA 421		
Log-cmd Channel Database File			
12:2	Channel 1:DNA AY599226 293/hr		
		en	

Restriction Analysis

1.	Select Show sites
	on sequence
	button

2. Click Next Button

_	Results					
	Show summary	✓ List site order and non-cutting enzymes				
\langle	Show sites on sequence	60 bases per line				
	Draw restriction map	With double-stranded sequence				
	Draw restriction pattern	With enzyme position Including annotations Includ				
	Ignore enzymes with more than	0 sites				
	Ignore enzymes with less than	0 sites				
	- Target DNA					
	Circular	🔲 All DNA in sequence channels				
	dam methylation	dcm methylation				

1. Select Blunt to

blunt ends

Press Finish

button

2.

3.

Enzyme Selection Enzyme File: RESTRICT.ENZ Save list Ŧ Ahalll ~ limit enzymes with Ball Select All >> BstD102I Dral Ecl136II Click Select All to Eco47III Eco72 use all restiction EcolCRI <<Clear EcoRV enzymes in the list Ehel Hpal Mscl Mstl Nael Nrul PmaCl Pmel List 0 Selected: 28

			9226.seq	🈁 AY59	9226_Restriction	n_A					
		SciI SmaI SpoI	CTC/GAG 1: CCC/GGG 1: TCG/CGA 1:	638 620 662					4		-
1.	Enzyme List with	SspI StuI YmpI	AAT/ATT 1: AGG/CCT 1:	2751 668	EAG					1	l
	site positions	Alluli	GAANN/ NNTTC	1. 2.	510						
2.	List of sites in	List 1	by Site Order	638	SciT	1913	DraT	2524	AbaTTT		
	position order	258	MstI	662	NruI	1832	AhaIII	2524	DraI	9	
		590	EcoRV	662	Spol	1832	DraI	2546	XmnI	4	
3.	List of enzymes	602	ECOICRI EC1136II	987	BstD102	I 2427	Scal	2788	Sspi BstD102I		
	that do not cut	620	SmaI	1813	AhaIII						
4.	Enzyme positions	Non Ci Ball	ut Enzymes Eco471	TT E	co72T	HpaT	MacT	NaeT		•	
	shown on the DNA	PmaCI	PmeI	P	vuII	SnaBI	SrfI	SwaI		3	
	sequence	Restr:	iction sites (on AY59	9226						
		1	TCGCGCGTTTC(AGCGCGCAAAG	GGTGATG CCACTAC	ACGGTGAAAA TGCCACTTTT	CCTCTGACA GGAGACTGT	CATGCAGCTCCC GTACGTCGAGGG	GGAGACGGTC CCTCTGCCAG	A T		
		61	CAGCTTGTCTG GTCGAACAGAC	TAAGCGG ATTCGCC	ATGCCGGGAG TACGGCCCTC	CAGACAAGC GTCTGTTCG	CCGTCAGGGCGC GGCAGTCCCGCG	GTCAGCGGGT CAGTCGCCCA	G C		
		121	TTGGCGGGTGT(AACCGCCCACA(CGGGGGCT GCCCCGA	GGCTTAACTA CCGAATTGAT	TGCGGCATC ACGCCGTAG	AGAGCAGATTGT. TCTCGTCTAACA	ACTGAGAGTG TGACTCTCAC	c g	Λ	
		181	ACCATATGCGG TGGTATACGCC	TGTGAAA ACACTTT	TACCGCACAG ATGGCGTGTC	ATGCGTAAG TACGCATTC	GAGAAAATACCG CTCTTTTATGGC	Ehe CATCAGGCGC GTAGTCCGCG	I C G	4	
				М	stI						-
		<								>	

Restriction Map

Destation in the second	A	
Restriction	Ana	iysis

Starting Restriction Analysis with DNA sequence in current channel, select Draw Restriction Map Press Next button

	Show summary	List site order and non-cutting enzymes
	Show sites on sequence	60 bases per line
~	Draw restriction map	With double-stranded sequence
	Draw restriction pattern	 With enzyme position Including annotations
	Ignore enzymes with more than	0 sites
	Ignore enzymes with less than	0 sites
-Ta	arget DNA	
	Circular	🔲 All DNA in sequence channels
	dom mothylation	dcm methylation

< <u>B</u>ack

Next>

Cancel

Restriction Map

- Select Blunt to limit enzymes with blunt ends
- 2. Click Select All to use all restiction enzymes in the list
- 3. Press Finish button

Restriction Map Select Annotations

Restriction Map Display Map: 3 panels

<

>

- 1. Map Panel
- 2. Sequence Panel
- 3. Map Info Panel

Restriction Map

Restriction Map Map Panel: Overlapping Text Objects

EcoRV

EcoICRI Eci136II

> Smal sc feature

> > Scil

Spol Nrul Stul

- 1. Hold mouse button and select overlapping area
 - 2. Select Align as Column menu from Edit tools
 - 3. Enter space size between columns
 - 4. Overlapping Text objects aligned as column

Restriction Pattern In-Silico Gel

Restriction Analysis

	Results					
	Show summary	List site order and non-cutting enzymes				
_	Show sites on sequence	60 bases per line				
1	 □ Draw restriction map ✓ Draw restriction pattern 	 With double-stranded sequence With enzyme position Including annotations 				
	Ignore enzymes with more than	0 sites				
	Ignore enzymes with less than	0 sites				
	Target DNA					
	Circular	All DNA in sequence channels				
	dam methylation	dcm methylation				

Restriction Pattern Select Enzymes

Enzyme Selection

- Select 5'Overhang to limit enzyme numbers (optional)
- 2. Double-Click BamHI and BgIII to select
- 3. Press Finish button

Х

Restriction Pattern In Silico Gel

1. Single cut by BamH1

- 2. Single cut by BgIII
- 3. Double cut by BamH1 and BgIII

Restriction Pattern In Silico Cloning

1. Click on the DNA band of interest

2. Choose Load as Vector menu

Restriction Pattern In Silico Cloning

Repeat In Silico Gel as the previous slides with another DNA sample

- 1. Click on the DNA band of interest
- 2. Choose Load as Insert menu

In Silico Cloning Compatible ends

- Press Cloning tool in Restriction Analysis tab
- 2. Verify the end compatibilities. Modify ends if needed by pressing the button of each end
- 3. Click OK button

SiRNA	t airwise ap Assembly	Enzyme Cut	Silen econstruction 🛣 Direct 1ap -			
AY599226 Restriction A 97 Pattern	n :	EXAMPLE 1.SEQ	Pattern			
Cloning	1		×			
Vector Channel File Databas	e Chan	nel File	Database			
Name AY599226	Name	example1				
Size(bp) 2740	Size(br) ⁸⁸⁶				
5' End +GATC Keep	5'End	+GATC	Кеер			
3' End -GATC Keep	3' End	-GATC	Кеер			
Vector recircularization		teverse insert orientati	ion and a a			
Linkers Vector-Insert Insert-Vector						
Load new plasmid sequence to channel						
ОК)3 🔤	Cancel				

In Silico Cloning Results

- 1. New sequence constructed
- Click Save button to save as new file

Restriction Fragment

Vector and Insert fragments can be loaded to channel from In Silico Gel and displayed in Text window.

1. Sequence original position

 5' and 3' end information
 The fragment can be saved as file for future works.

